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Unit IIT Stresses, Slope & Detlection on Beams
[12 Hr.]

Bending Stress on a Beam: Introduction to bending stress on a beam
with application, Theory of Simple bending, assumptions in pure
bending, derivation of flexural formula, Moment of inertia of common
cross section (Circular, Hollow circular, Rectangular, | & T), Bending
stress distribution along the same cross-section

Shear Stress on a Beam: Introduction to transverse shear stress on a
beam with application, shear stress distribution diagram along the
Circular, Hollow circular, Rectangular, | & T cross-section

Slope & Deflection on a Beam: Introduction to slope & deflection on a
beam with application,



Session I: Stresses in Machine
Elements

Bending Stresses:

Theory of simple bending with assumptions

Derivation of flexural formula

Second moment of area of common cross sections

(rectangular, I, T,C ) with respect to centroidal and parallel
axes

Bending stress distribution diagrams

Moment of resistance and section modulus



Theory of simple bending

The conditions for using theory of simple bending are:

1

2,
3.
4.

The beam is subjected to pure bending

Shear force is zero

No torsional or axial loads are present

Material is isotropic (or orthotropic) and homogeneous

Plane of
symmetry

/& Neutral

\)‘ axis of cross

NG .
\/< X section

Neutral surface




Assumptions

Beam is initially straight and has a const. cross-section

Beam is made up of homogeneous material (isotropic)

Beam has a longitudinal plane of symmetry

Geometry of the beam is such that bendingis the primary cause of failure
not buckling Elastic limit is nowhere exceeded

E is same in tension and compression

Plane cross-section remains plane before and after bending

The radius of curvature is large compared with the dimensions of the

cross-section.



‘ Beam Contd.
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Theory of Slmple Bending

Neutral layer or surface (N-N):
G A layer which is neither shortened nor
' elongated

Neutral axis (N-A):

line of intersection of neutral layer on
a cross-section of beam i1s known as
neutral axis

e i

' Ble —agx—»i0
(@)

Below NN: Tension, Above NN: Compression

The amount by which a layer increases or decreases in length, depends upon
the position of the layer w.r.t. N-N. This theory of bending is known as
theory of simple bending.

R = Radius of neutral layer N’-N’.
0 = Angle subjected at O by A’B’ and C'D’ produced.
y = Distance from the neutral layer.



Netural Surface

Therefore,

strain in fibre AB =

change inlength

_IIR+viB-RA _ RBE+vyB-RA _ ¥
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stress
strain
Therefore equating the twostrains as

obtained fromthe tworelationsi.e,

Howew ar

=E where E = ¥Young's Modulus of elasticity
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Second Moment of Area

Taking an analogy from the mass moment of inertia, the
second moment of area is defined as the summation of areas
times the distance squared from a fixed axis

This property arised while we were driving bending theory
equation

This is also known as the moment of inertia

An alternative name given to this is second moment of area,
because the first moment being the sum of areas times their

distance from a given axis and the second moment being the
square of the distance

Term: [+#4 IS called second moment of area



Second Moment of Area contd.

Y

Consider any cross-section having small element of area dA.

( ,QU Then By Definition,

X (/ o] ) « 1 (Mass Moment of Inertia about x-axis = [ v* dA

] I (Mass Moment of Inertia about y-axis = [ ¢

Now the moment of inertia about an axis through ‘O’ and perpendicular to
the plane of figure is called the polar moment of inertia (J).

(The polar moment of inertia is also the area moment of inertia).

The polar moment of inertia is given by

= Jitda The relation (1) is known as the perpendicular
= [ + y)0A axis theorem and may be stated as follows:

- Lan]yan Th f the M f Inertia ab
Sl 4, e sum of the Moment o1 Inertia about any two axes

ord=l bl qy 1nthe plane is equal to the moment of inertia about
an axis perpendicular to the plane, the three axes
being concurrent, i.e, the three axes exist together.




‘ Second Moment of Area contd.
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Section Modulus and Moment of
Resistance

It is the ratio of moment of inertia of a section about the neutral axis to the

distance of the outermost layer from the neutral axis.

I
L= __:#
I = M.O.L about neutral axis

= Distance of the outermost layer from the neutral axis

Ymax

M=c, 2

Hence moment of resistance offered by the section is maximum when Z is

maximum. Hence Z represents the strength of the section.



‘ Section Modulus
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Procedures for determining bending stresses
Stress at a Given Point

Use the method of sections to determine the bending moment M at the
cross section containing the given point.

Determine the location of the neutral axis.

Compute the moment of inertia I of the cross- sectional area about the
neutral axis. ( If the beam is standard structural shape, its cross- sectional
properties are listed in Appendix B. P501)

Determine the y-coordinate of the given point. Note that y is positive if the
point lies above the neutral axis and negative if it lies below the neutral
axis.

Compute the bending stress from o = -My/I. If correct sign are used for M
and y, the stress will also have the correct sign (tension positive

compression negative).



A steel wire of 5 mm diameter is bent into a circular shape of 5 m radius.
Determine the maximum stress induced in the wire. Take E = 200 GPa.

SoruTion. Given : Diameter of steel wire (d) = 5 mm ;
Radius of circular shape (R)=5m =3 x 10° mm and modulus
of elasticity (E) = 200 GPa = 200 x 10° N/mm”.

We know that distance between the neutral axis of the
wire and its extreme fibre,

d 5
y = 2—2-2.5111:11

Fig. 14.3

and maximum bending stress induced in the wire,

E__ 200x10°

2
Op (max) = E?{}’—W X 2.5 =100 N/mm"~ = 100 MPa Ans.




A copper wire of 2 mm diameter is required to be wound around a drum.
Find the minimum radius of the drum, if the stress in the wire is not to exceed 80 MPa. Take
modulus of elasticity for the copper as 100 GPa.

SoLution. Given : Diameter of wire (d) =2 mm ; | {80 MPa_

Maximum bending stress 0, () = 80 MPa =80 Nfrnm2 ———————
and modulus of elasticity (E) = 100 GPa = 100 x 10°

memg.

We know that distance between the neutral axis of
the wire and its extreme fibe ¥ _ ~_ _ -~ ___

= 2 = | mm
y - 2_
Minimum radius of the drum
R=—L xE=L x100x10’ J.0_E

125x10°mm=125m  Ans.




A rectangular beam 60 mm wide and 150 mm deep is simply supported
aver a span of 6 m. If the beam is subjected to central point load of 12 kN, find the maximum
bending stress induced in the beam section.

Sowumon. Given : Width (£) = 60 mm ; Depth (d) = 150 mm ; Span ([)=6 x 10° mm and load
(W) =12kN=12x 10’ N.

IEIkN
- 3 SN 3
150 mm +
|
F F —l'|ﬁUIIIIIIl|"|—
- & m >

Flg. 14.15

We know that maximum bendint moment at the centre of a simply supported beam subjected to
a central point load,

Wi _ (12X107) X (6 10%)

—_ —_— 6 |
M = 4 3 =18 x 10" N-mm
and section modulus of the rectangular section,

2 2

z = bd” _S0XMOT 55, 163
6 6
Maximum bending stress,
M _ 18x10°

ARy es] —80N/mm°=80MPa  Ans.

O max




Two wooden planks 150 mm x 50 mm each are connected to form a T-

section of a beam. If a moment of 6.4 kN-m is applied around the horizontal neutral axis, induc-
ing tension below the neutral axis, find the bending stresses at both the extreme fibres of the
cross- section.

ESGLUTIDN. Given: Size of wooden planks = 150 mm X 50 mm and moment (M) = 6.4 kN-m = 6.4
x 10" N-mm.

Two planks forming the 7-section are shown in Fig. 15.1. First of all, let us find out the centre of
gravity of the beam section. We know that distance between the centre of gravity of the section and its
bottom face,

(150 50) 175+ (150 X 50) 75 _ 1875000
T (150x50)+(150x50) 15000

= 125 mm

Distance between the centre of gravity of the section and the upper extreme fibre,
¥, =20-125=75 mm
and distance between the centre of gravity of the section and the lower extreme fibre,
y, = 125 mm

We also know that Moment of inertia of the T section about an axis passing through its c.g. and
parallel to the botom face,




| 3
I = % +(150% 50) (175 - 125)1} - [

= (203125 x 10%) + (32.8125 x 10°) mm"
= §3.125 x 10° mm”

Bending stress in the upper extreme fibre,

M 6.4x10°

2
g, = XA¥= % 125 N/mm
L= 17 53.125%10°

= 15.06 N/mm® = 15.06 MPa (compression)
and bending stress in the lower extreme fibre,
6.4x10° )

M
G = —Xy.= % 75 N/mm
271 7% s3.125%10°

= 9,04 N/mm” = 9.04 MPa (tension)  Ans.

50 (150)°

Ans.

+(150x50(125- 75)2}

— 10— |

=

mm

= "

—> 50 |

|




Figure 15.2 shows a rolled steel beam of an unsymmetrical I-section.

—%lmk—_L
50
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50

emof

Fig. 15.2

If the maximum bending stress in the beam section is not to exceed 40 MPa, find the moment,
which the beam can resist.

Sorution. Given: Maximum bending stress (G,,,,) = 40 MPa = 40 N/mm”.




SoLumion. Given: Maximum bending stress (0, ) = 40 MPa = 40 N/mm-.
We know that distance between the centre of gravity of the section and bottom face,

- (100 % 50) 275 + (200 % 50) 150 + (200 x 50) 25
- (100 x 50) + (200 x 50) + (200 = 50)

v, =300-125=175 mm and ¥, =125 mm

Thus we shall take the value of ¥y = 175 mm (i.e., greater of the two values between y; and y;).
We also know that moment of inertia of the [-section about an axis passing through its centre of
gravity and parallel to the bottom face,

=125 mm

3 3
I = [%+[]Dﬂx5ﬂ} {2?5—125}?}{%+f&{}xzmmﬁn—lzﬁﬂ
: 100
200 % (50)° 2| 4 ~ -
55— +(200%50) (125~ 25)" | mm |_ J

=255.2 % 10° mm"*

and section modulus of the [-section,
50 —
255.2x10°

_ 4 _230.2xll 6 3
£ = y 173 = 1.46 x 10" mm

Moment, which the beam can resist,

M =0, xZ=40x(1.46 x 10°) N-mm

g g

=584 x 10°N-mm=584kN-m  Ans. > 200




‘ Example 1: I-Section

Calculate the stress on the top and bottom of the section shown when the bending moment is 300 N m,
Draw the stress distribution.
mim

N Bla—
T
L

ET ‘ 40 mm l

50 mm

Y




Mow calculate the stress using the well knoamn formula oy = Myl

Top edge y = distance from the centroid to the edge = 30 - 28,08 = 21.93 mm
o= 3 x 002192418300 x 107 =15.72x 10°Pa or 15.72 MPa {Tensile)
Bottom cdge y = y=28.07 mm

og= 300 x 0.0ZE0R4] 8200 x 107 =20.14 MPa {Tensile)

The stress distribution looks like this.

Pos#lion g 16.72 K\Pa

3
21,93 mm
: -
eSS
FROF i
i 3

- 20,12 MPa



Example 2:

A beam has a hollorar circular cross section 44 mm owter diameter and 2 i inmer diameter. [t 15 made

from metal with a modulus of elasticity of 205 (GPa. The maximum tensile stress in the beam must nol
excesd 350 MPa.

Calculate the following.

{1} the maximum allowable bending moment.
{ii} the radius of curvature.

SCFLLTT O

D= 40 mm, d = 20 mm
1=m{404 - 30464 = 859 x 103 mm? o 859 x 10-9 md.

The maximum value of v is V2 so v = 20 mm or 0.02 m

I'lf{_.:'.r

Ty

Mo Zh 30 R BSOx 107 ) oia g o s03 M Nm
¥ 0.2

T E

v R

Ey 205 x10" x Q.02
o 150 x10°

=117l m



‘ Example 3:

The section solved in example 2 is subjected to a tensile force that adds a tensile stress of 10 MPa
everywhere. Sketch the stress distribution and determine the new position of the neutral axis.

SOLLUTIONN

The stress on the top cdge will increase to 23,72 MPa and on the bottorn edge 1t will decrcase to -10.12

MPa. The new distribution will be as shoan and the new paosition of the neutral axis may be calculated
by ratios.

2572 KPa
&
A
M B -
F
B
L
10.12 K1Pa
FIE'IJ.I’-: i1

A—B=50lmm so0B=51-A4A
By similar triangles A5 72 =B/10.12 A={25.7TXI0.12)B=25B

B=31-23B8B 13 B=3 B=I1412mm A=30-14.12 =2315KEE mm



‘ Example 4:

Arcctangular section timber beam is 50 mm wide and 75 mm deep. It is clad with steel plate 10 mm
thick on the top and bottom. Calculate the maximum stress in the steel and the timber when a moment
of 4 kKNm is applied.

E for timber is 10 GPa and for stecl 200 GPa

SOLUTION ‘, =0 ,\
ot

The width of an equivalent steel web must be
t=30xE,/E=53x10200=25mm

Now calculate L, for the equivalent beam.

This is casy because it is symmetncal and involves =
finding | for the outer box and subtracting | for the

missi ris.

Iy = 09512 475 7512 0!l
1= 1.9025x 10% m*

20

g \
I
7% | -+
0!
The stress at y = 37.5 mm o= Myl = 4000 x 0.0378/1.9025 x 107 = 78.845 MPa

The stress in the timber at this level will be different because of the different E value.
o, =c.E/E, =392 MPa

The stress at y = 47.5 mm will be the stress at the edge of the steel.

&, = My/l = 4000 x 0.0478/1.9025 x 10* =99.87 MPa




SOLUTIONN

First calculate the second moment of area using the tabular method that you should already know.
Divide the shape into three sections A, B and C. First determine the position of the centroid from the

bottom edge.

Area ¥ AY
A &00 mm 45mm 27000 mm
B 00 25 mm TE00 mm
C 400 5 rmm 2000 mm
Totals 1300 mm? FE3S000 mm”

For the whaole section the centroid position 15 §F=363000/ 1300 = 2E.07 mm
Now find the second moment of area about the base. Using the parallzl axis theorem.

BIY/12 AT’ I=BD712+AT"
A 60 % 1071 2=3000 mm?* 600 x 45%=1215000 1220000 mm’
B 0% 3071 2=22500 mm® 200 x 25°=157500 210000 mm”
C W 1071 2=1223 mmt 400 x 5=10000 13133 mm’

Total = 1443332 mm*
The total second moment of area about the bottom is 1443232 mmd
Mow move this to the centroid using the parallel axis theorem.

[= 1443333 - AFS =1443313- 1300 x 28.08" = 418200 mm*



. Shearing Stress at a Section in a Loaded Beam

Consider a small portion ABDC of length dx of a beam loaded with uniformly distributed
load as shown in Fig. 16.1 (a).

M M+ dM

(b)

Fig. 16.1. Shearing stress
We know that when a beam is loaded with a uniformly distributed load, the shear force and
bending moment vary at every point along the length of the beam.
Let M = Bending moment at AR,

M +dM = Bending moment at CD,




F = Shear force at AB,
F + dF = Shear force at CD, and
I

Moment of inertia of the section about its neutral axis.

Now consider an elementary strip at a distance y from the neutral axis as shown in Fig. 16.1 (b).

Now let ¢ = Intensity of bending stress across AB at distance y from the neutral axis and

a = Cross-sectional area of the strip.
We have already discussed that

Mo % o o="2xy ... (See Art. 14.6)
Similarly, o+do = wx y
where @ + dg = Intensity of bending stress across CD.

We know that the force acting across AB

:StressxAreazﬁxa:-%xy}ca N0
Similarly, force acting across CD

= {g+dﬁ}xa=ﬂx}rxa (i)

Net unbalanced force on the strip
= M}:y}{a—%x }rxa:%x;\:xa




The total *unbalanced force (F) above the neutral axis may be found out by integrating the above
equation between 0 and d/f2.

4 d
or = f@awd}rzﬂfaw-dy:@ﬁl? 1)
I : 1 : 1
where A = Areaofthe beam above neutral axis, and?=Dislancebetween

the centre of gravity of the area and the neutral axis.
We know that the intensity of the shear stress,

M
; — Totalforce _ 7 .(Where b is the width of beam)
Area dx-b
_dM Ay
= & " 1b
= Fx % Substituting % = F = Shear force




An I-sections, with rectangular ends, has the following dimensions:
Flanges =150 mm x 20 mm, Web = 300 mm 10 mm.
Find the maximum shearing stress developed in the beam for a shear force of 50 kN.
SoLuTion. Given: Flange width (B) = 150 mm ; Flange thickness |<_ 150 _,_|
= 20 mm ; Depth of web (d) = 300 mm; Width of web = 10 mm;
Overall depth of the section (D)) = 340 mm and shearing force (F) =
50 kN =50 x 10° N.

We know that moment of inertia of the [-section about its centre

of gravity and parallel to x-x axis, 340
. , ; 10 mm—
150% (340)° 140 % (300) 4
L. = _
XX 12 2z
= 1763 x 10° mm"*
and maximum shearing stress,
: ¥
2
_F|B 2 g, bd® .
Tmax = m{g{ﬂ d*)+—2 ] Fig. 16.10
3 2
_ 5»0}-:1'[::r 150 [(344]}2 3 (30&}2]+ 103 (300) N/mm>
(176.3x10%) x10| 8 8

= 16.8 N/mm" = 16.8 MPa  Ans.




An [-section beam 350 mm x 200 mm has a web thickness of 12.5 mm and
a flange thickness of 25 mm. It carries a shearing force of 200 kN at a section. Sketch the shear
stress distribution across the section.

SoLution. Given: Overall depth (D) = 350 mm ; Flange width (B) =200 mm ; Width of Web =
12.5 mm ; Flange thickness = 25 mm and the shearing force (F) =200 kN =200 x 10° N.

We know that moment of inertia of the /-section about it centre of gravity and parallel to x-x axis,

_200%(350)  187.5%(300)°
*T o
We also know that shear stress at the upper edge of the upper flange is zero. And shear stress at
the joint of the upper flange and web

=292.7%10° mm*

F 200%10°
81 8 (292.7x10")

2.78 N/mm’ = 2.78 MPa

[(350)° - (300)*] N/mm’




v
I - - T
___T____“}z.?s 1448
300
sp -——-———-—)—-—-q-———-——— 52.1
———————— 44 4%
e ___T_____Jz.?s
(a) 25 (b)

Fig. 16.11

The shear stress at the junction suddenly increases from 2.78 MPa to 2.78 x % =44 48 MPa.

We also know that the maximum shear stress,

_ _F | B pr_go, bd
T = I-b[ﬁ{ﬂ d7 )+ B}
' 2
_ 200 203 200 (350)? _ (3002 4 12:5 X (300)
(202.7 x10°) x12.5| 8 8

= 52.1 N/mm’ = 52.1 MPa

Now complete the shear stress distribution diagram across the section as shown in Fig




' vertical shear force of 100 kN. Calculate the shear stress at important

A T-shaped cross-section of a beam shown in Fig. 16.12 is subjected to a

points and draw shear stress distribution diagram. Moment of inertia |-— 200 —h-l

about the horizontal neutral axis is mm’.

Sowumon. Given: Shear stress (F) = 100 kN = 100 x 10° N and
moment of inertia (/) = 113.4 x 10° mm",

First of all let us find out the position of the neutral axis. We know
that distance between the centre of gravity of the section and bottom of
the web,

(2003 50) x 225] +[(200 x 50) x 100]
- (200 x 50) + (20 x 50)

= 162.5mm

- Distance between the centre of gravity of the section and top
of the flange,

Yo = (2004 50)-162.5 =875 mm

50

200
— 50 |—
Fig. 16.12

We know that shear stress at the top of the flanges is zero. Now let us find out the shear stress at
the junction of the flange and web by considering the area of the *flange of the section. We know that

area of the upper flange,
A = 200 x50 = 10000 mm’
y = E?.S—%=ﬁl.5mm
B = 200 mm
. Shear stress at the junction of the flange and web,
T = F:-cﬂ=]ﬂ!]:-:]03x 1 xﬁﬁlj N/mm”
I-B (113.4%10%) % 200

2.76 N/mm” = 2.76 MPa




Da e

11.64

(b)

Fig. 16.13

The sheoar strees st fho junction ssiddenly incoases from 276 MPa to 2.76 X %=11.[HMP1

Mow let us find out the shear stress at the neutral axis, where the shear stress is maximum.
Considering the area of the T-section above the neutral axis of the section, we know that

*‘A,‘T = [IE{I]KSI}]xﬁE.Ej+|:(37.5:<5|}}H 3’25] o
= 6602 % 10° mm’
and b — 50 mm
Maximum shear stress,
Ty = Fxﬂ=1mxlﬂ3;-: ﬁm.zx;& N’
b (113.410%) x 50

11.64 N/mm” = 11.64 MPa




" A cast-iron bracket subjected to bending, has a cross-section of I-shape
with unequal flanges as shown in Fip. 16.14.

1 —— 250 —]
50

T

250

‘ 30
50

T e 150—
Fig. 16.14
If the compressive stress in top flange is not to exceed 17.5 MPa, what is the bending moment,
the section can take? If the section is subjected to a shear force of 100 kN, draw the shear stress
distribution over the depth of the section.

SoruTion. Given: Compressive stress () = 17.5 MPa=17.5 N/mm” and shear force (F)=100
kKN= 100x 10° N

Bending moment the section can take
First of all, let us find out the position of the neutral axis. We know that distance between centre
of gravity of the section and bottom face,
_ (250% 50) 325 + (250 % 50) 175 + (150 % 50) 25
Yo (250 % 50) + (250 x 50) + (150 = 50)




6 437 500
32500
Distance of centre of gravity from the upper extreme fibre,
¥, = 350-198 = 152 mm
and moment of inertia of the section about an axis passing through its centre of gravity and parallel to
X-X axis,

=198 mm

;| 250x650)°
- 12
50 % (250)°
_|_
{ 12

+ (250 % 50) (325 -1 QE}EJ

+ (50 % 250) (198 — 1?5}?}

!15{1:».: (50)°
+ —_—

5 + (150 50) (198~ 25)3} mm”

= Sﬂixlﬂﬁnlrn4

Bending moment the section can take

og. 175 6 _ 6
— ;;Ex.f_lﬁixﬁmxm =37.8x10" N-mm

= 57.8 kN-m Ans.




_______ _ j\l.iﬁ 6.3

—————————————————————————— 7.36
_________ :_/1.?1 5.16
(a) (b)

Fig. 16.15

A = 250 x50 = 12500 mm

§ = 152—5—2‘]':121 mm

B = 250 mm

Shear stress at the junction of the upper flange and web,

v = Fx A2 100x10° 120X g2

I-B (502 x107) = 250

= 1.26 N/mm’ = 1.26 MPa

e 250
The shear stress at the junction suddenly increases from 1.26 MPa to ].Zﬁxﬁ =6.3 MPa.




ZaU

The shear stress at the junction suddenly increases from 1.26 MPa to ].Iﬁxﬁ =6.3 MPa.

Now let us find out the shear stress at the junction of the lower flange and web by considering the area

of the lower flange. We know that area of the lower flange,
A = 150 x 50 = 7500 mm’

¥ = ]93—%=]?3mm
and B = 150 mm

Shear stress at the junction of the lower flange and web,

T = Fngzlmxlﬂjx T500x173

I- (502 x10%) x 150
— 1.72 N/'mm’ = 1.72 MPa

150

The shear stress at the function suddenly increases from 1.72 MPato 1.72 x S0 = 3.16 MPa.

Now let us find out the shear stress at the neutral axis, where the shear stress
Considering the area of the I-section above neutral axis, we know that

A = [[15!]3{5{}}3{]2?]+|:{]|]gx5[|]x%] mm?

= 1.848 % 106 mm"
and b = 530 mm
Maximum shear stress,
' — 6
T = Fx2Y _100x10°x 1'343’;"] N/mm
s I-b (502 < 10°) % 50

— 7.36 N/mm° = 7.36 MPa

1S Maximuim.

2

Now draw the shear stress distribution diagram over the depth of the section as shown in

Fig. 16.15.




Distribution of Shearing Stress over a Rectangular Section

Consider a beam of rectangular section ABCD of width and depth as shown in Fig. 16.2 (a). We
know that the shear stress on a layer JK of beam, at a distance y from the neutral axis,
o AY ,
1 = Fx ﬁ ()

* This may also be found out by splitting up the beam into number of strips at distance of from the neutral axis.

We know that unbalanced force on strip 1 = g}ml ‘¥

Similarly, unbalanced force on strip 2 = #}: y - Vo

ﬂ}mgqg and so on

and unbalanced force on strip 3 i

. Total force, F = #xal-}'l+%xa1-}'1+#xas-y3+....

dM dM -
= T{m N .V + 3.V + ...‘.I:T AY




where F = Shear force at the section,
A = Area of section above vy (i.e., shaded area AJKD ),
-_? = Dhstance of the shaded area from the neutral axis,
.AT = Moment of the shaded area about the neutral axis,

I = Moment of inertia of the whole section about its neutral axis, and
b = Width of the section.

«—— h —»

J‘&®$§ﬁﬁhx ______ 'ﬁx{

¥

LT,
|

B (a C (B)

Flg. 16.2. Rectangular section
We know that area of the shaded portion AJKD,

A = b(%—}-) i)
R I 7 S Y
y = “2(1 ‘)‘”4 2




_y,d_1(,.d
= 1+4 2(_‘u+2) .Lar)

Substituting the above values of A and '_? In equation (1),

d 1 d
)b
Ay _ o G750
Ib Ib

Fld ,
_ ﬁ[T_T ] 1v)

We see, from the above equation, that T increase as y decreases. At a point, where y=d/2, 1=0;
and where y is zero, T is maximum. We also see that the vanation of T with respect to y is a parabola.

3
At neutral axis, the value of T 1s maximum. Thus substituting y=0and [ = % in the above equation,
_ _F [d)_3F _ . [--tzizi
Tm = bas 4 _Zbd =1. 'tm. wan " av Aﬁ.‘.ﬂ. M
Zxﬁ

Now draw the shear stress distribution diagram as shown in Fig. 16.2 (b).




Shear Stresses

Shear force is related to change in bending moment between adjacent

sections.

Cut-out section from a beam



Problem 1: Derivation of Shear stress in
rectangular cross-section

Derive an expression for the shear stress distribution in a beam of solid
rectangular cross-section transmitting a vertical shear V.

A longitudinal cut through the beam at a e

distance y, from the neutral axis, isolates ;.J’ (LLLLL x
area klmn. (A)). L WAy d
Y1 J/
Shear stress,
_y¥Q
It
V. Fig. C/S area of the beam
- élq vdA 3
_ v 42 _ NA
—EB{ by dy
:E[(d’ 2) =(n) ] ) Fig. Shear Stress distribution



Problem 1: Derivation of Shear stress in

rectangular cross-section contd. (Max. )

Max Shear Stress occurs at the NA and this can be found by putting y=0 in
the Eq. (1).




Problem 2: A vertical shear force of 1IKN acts on the
cross section shown below. Find the shear at the
interface (per unit length) e— 100mm —|

® x
7; 80




Problem 3: A 6m long beam with a 50 mm X 50 mm
cross section is subjected to uniform loading of
5KN/m. Find the max shear stress in the beam

SkN/m

WOoW W OW W VA AL

5 R




Problem 4: The cross section of an I beam is shown
below. Find the max.shear stress in the flange if it
transmits a vertical shear of 2KIN.

b———- 100mm —— ,|,

10 mm

|

100 mm

I I 10 mm

—s  k—10 mm

HAAAIY,




Need

In all practical engineering applications, when we use the
different components, normally we have to operate them within
the certain limits

Constraints are placed on the performance and behavior of the
components

For instance we say that the particular component is supposed to
operate within this value of stress and the deflection of the
component should not exceed beyond a particular value

In some problems the maximum stress however, may not be a
strict or severe condition but there may be the deflection
which is the more rigid condition under operation



‘ Deflection and Slope

Deflection is a term that is used to describe the degree to
which a structural element is displaced under a load

Slope is the angle made by tangent drawn to deflected shape
with the original shape




Elastic Curve
The deflection diagram of the longitudinal axis
that passes through the centre of each cross-

sectional area of the beam

Support that resist a force, such as pinned,

restrict displacement

Support that resist a moment such as fixed,
resist rotation or slope as well as

displacement



Relation Between B. M. And Slope

Assumption:

1.

Stress is proportional to strain i.e. hooks law applies. Thus,
the equation is valid only for beams that are not stressed
beyond the elastic limit.

The curvature is always small.

Any deflection resulting from the shear deformation of the
material or shear stresses is neglected.

Detflections due to shear deformations are usually small

and hence can be ignored.



Relation between Slope, Deflection and Radius of Curvature

Consider a small portion PQ of a beam, bent into an arc as shown in Fig. 19.2.
Let ds Length of the beam PQ,
R = Radius of the arc, into which the beam has been bent,
C = Centre of the arc,
¥ = Angle, which the tangent at P makes with x-x axis and
Y+ d¥Y = Angle which the tangent at Q makes with x-x axis.
From the geometry of the figure, we find that

ZPCQ = d¥
and ds = R.d¥
ds dx L
R = PP L] ... (Considering ds = dx)




or

1_ av

E = dx {.E)
We know that if x and y be the co-ordinates of point P, then
_ &y
tan ¥ = .
Since ¥ is a very small angle, therefore taking tan ‘¥ ="V,
day _ d% [ 1_av
dx dx’ “UR dx
We also know that
M y
7 =R © M = Elx R
M = EIx ﬁ | Substituti al f 1
72 ( ubstituting value o EJ

Note. The above equation is also based only on the bending moment. The effect of shear force, being very small
as compared to the bending moment, is neglected.




Simply Supported Beam with a Central Point Load

Fig. 19.3. Simply supported beam with a central point load.

Consider a simply supported beam AB of length [ and carrying a point load W at the centre of
beam C as shown in Fig. 19.3. From the geometry of the figure, we find that the reaction at A,
R W

A =RB=E




Consider a section X at a distance x from B. We know that the bending moment at this section,

M, = R;.x= % X= % ... (Plus sign due to sagging)
d’y  Wx
El — = — '
12 5 )]
Integrating the above equation,

| dy Wx* .

— = —+C
El I 2 I ... (i)

where C| is the first constant of integration. We know that when x = % then %z 0. Substituting

these values in equation (i),

-WJE .W.!?
= —+C = - —
0 16 : or ¢ 16

Substituting this value of C, in equation (ii),

' o 2
dy _ W WP
El o = 4 6 ..(1i1)
This is the required equation for the slope, at any section. It will be interesting to know that the
maximum slope occurs at A and B. Thus for maximum slope at B, substituting x = 0 in equation (iit),
wi*

El.iy = ~ =




wi* ...(Minus sign means that the tangent

2= 716Kl at B makes an angle with AB in the
Wi negative or anticlockwise direction)
or ip = 16El radians
: wik
By symmetry, A = J6El radians
Integrating the equation (iif) once again,
W' Wikx :
Ely = - +C
S VR T o

where C is the second constant of integration. We know that when x =0, then y =0, Substituting these
values in equation (1v), we get C, = 0.

Wxo  Wi'x
Ef}? = F_ 16 (I-'}

This 1s the required equation for the deflection, at any section. A little consideration will show

3

that maximum deflection occurs at the mid-point C. Thus for maximum deflection, substituting x= —

2
in equation (v),
3 2
Wil Wi (I
Efv. = "MLy _W (1
be 12 ( 2) 16 [ 2)
_wWe wre . wr
T 06 32 48
' e ... (Minus sign means that the
or Yo = — 18E] deflection 1s downwards)
. e

48ET




_' A simply supported beam of span 3 m is subjected to a central load of 10 kN.
Find the maximum slope and deflection of the beam. Take I = 12 x 10° mm® and E = 200 GPa.

SoLuTion. Given: Span () =3 m =3 % 10° mm ; Central load (W) = I0KkN = 10 x 10° N ;
Moment of inertia (1) = 12 % 10° mm" and modulus of elasticity (E) = 200 GPa = 200 x 10° N/mm".

Maximum slope of the beam

We know that maximum slope of the beam,

Wi O (10x10Y) x (3x10°)
16ET 16 % (200 x 10%) % (12 % 10%)

I, = =0.0023 rad Ans.

Maximum deflection of the beam

We also know that maximum deflection of the beam,

Wi _ (10%10%) x (3 x10%)°
48ET 48 % (200 % 10™) % (12 % 10%)

Yo = =2.3 mm Ans.




A wooden beam 140 mm wide and 240 mm deep has a span of 4 m. Determine
the load, that can be placed at its centre to cause the beam a deflection of 10 mm. Take E as
6 GPa.

SoLumon. Given: Width (b) = 140 mm ; Depth (d) =240 mm ; Span () =4 m=4 x 10° mm :
Central deflection (v,) = 10 mm and modulus of elasticity (E) = 6 GPa = 6 x 10" N/mm".

Let W = Magnitude of the load,
We know that moment of inertia of the beam section,

bd®  140%(240)°

I _ _ _ ‘ 6 4
= = 161.3x10° mm
and deflection of the beam at its centre (y,),
W _ W x (4% 10°)°
10 = 98ET ~ 48 % (6x10°) x (161 3 x 10°)
B 1) ; i
W=——35=725%10°N= 7.25kN Ans.

1.38x10™




Simply Supported Beam with a Uniformly Distributed Load

[wfunit length f—— X —

Fig. 19.6. Uniformly distributed load.

Consider a simply supported beam of length and carrying a uniformly distributed load of per
unit length as shown in Fig. 19.6. From the geometry of the figure, we know that the reaction at A,

R, = Ry= “’?J

Consider a section X at a distance x from B. We know that the bending moment at this section,

Mx _ wix '.w:2

=S ..(Plus sign due to sagging)
d’ .wix wx'” :

Integrating the above equation,




' 2 2
g v _w o .. (i)

dx =~ 4 6
where C, is the first constant of integration. We know when x = % , then % =0

Substituting these values in the above equation,

2 3 3 3
wl | [ wil wl™ wi
WLy wil) oWl W
0 4[2} 6(2} =76 a3 TG

Ij
or CI = _wﬁ

Substituting this value of C, in equation (if),
o dy wix> wxo  wl
El - 1 e ot C, ..(1ii)

This is the required equation for the slope at any section. We know that maximum slope occurs at
A and B. Thus for maximum slope, substituting x = 0 in equation (iii),

3
El-i. = _ﬂ ... (Minus sign means that the tangent at
# 24 A makes an angle with AB in the
| wi3 negative or anticlockwise direction)

'B = T 4EI




wij

or ‘s = 24f]
S o3
: wl
By symmetry, s = 4]
Integrating the equation (i) once again,
a3 4 3
El.y = “i‘lf - ‘“”2{1*‘#«:1 (V)

where C; 1s the second constant of integration. We know when x = 0, then y = 0. Substituting these
values in equation (iv), we get C, =0
whi'  wx'  wlx )
12 24 24 Y
This is the required equation for the deflection at any section. We know that maximum
deflection occurs at the mid-point C. Thus maximum deflection, substituting x = I/2 in equation (v),

El.-y =

wl (1Y w(D wliny w w w' sw

Elye=1\3) ~24\2) ~24\2)7 06 3 a5~ 3
st
or V. = — ...{Minus sign means that the
‘ . IBAEL deflection 1s downwards)
Swi’

3B4E]




A simply supported beam of span 4 m is carryving a uniformly distributed
load of 2 kN/m over the entire span. Find the maximum slope and deflection of the beam. Take EI
for the beam as 80 x 1 0’ N-mm’.

SoLuTion. Given: Span () =4 m=4 x 10° mm ; Uniformly distributed load (w) = 2 kN/m =
2 N/mm and flexural rigidity (E) = 80 x 10° N-mm".

Maximum slope of the beam

We know that maximum slope of the beam,

wie  2x(4x10°)
24EI  34%(80x10°)

.!'A = = (.067 rad Ans.

Maximum deflection of the beam

We also know that maximum deflection of the beam,

swi' 5x2x(4x10%)°

= g =833 mm Ans.
384El 384 x(80x10")

Yo =




A simply supported beam of span 6 m is subjected to a uniformly distributed

load over the entire span. If the deflection at the centre of the beam is not to exceed 4 mm, find the
value of the load. Take E = 200 GPa and I = 300 x 1 0" mm".

SoLuTion. Given: Span () =6 m= 6>< 10’ mm Deflection at the centre (y) =4 mm ; modulus

of elasticity (E) = 200 GPa = 200 x 10° N/mm’” and moment of inertia (I)=300x10 mm4
Let w = Value of uniformly distributed load in N/mm or kN/m.
We know that deflection at the centre of the beam (y,),
e
4 = Swl wax(ﬁxm] 081 w

34l 384 (200x10%) x (300 10°)

= 14.2 kN/m Ans.

=
Il

281




A timber beam of rectangular section has a span of 4.8 metres and is
simply supported at its ends. It is required to carry a total load of 45 kN uniformly distributed
over the whole span. Find the values of the breadth (b) and depth (d) of the beam, if maximum
bending stress is not to exceed 7 MPa and maximum deflection is limited to 9.5 mm. Take E for
timber as 10.5 GPa.

SoLuTion. Given: Span (/)=4.8 m=4.8 x 10° mm ; Total load (W)= (wl) =45 kN =45 x10° N;
Maximum bending stress G, .,y =7 MPa =7 ]f'sh'mm2 Maximum deflection (y.) = 9.5 mm and
modulus of elasticity (E) = 10.5 GPa = 10.5 x 10° mem

Let b = Breadth of the beam and
d = Depth of the beam.

We know that in a simply supported beam, carrying a uniformly distributed load, the maximum
bending moment,

wl*  wixl Wxl 45x48
g8 8 8 8
= 27 kN-m = 27 x 10° N-mm
and moment of inertia of a rectangular section,

3
[ = bd
12




We also know that distance between the neutral axis of the section and extreme fibre,

d
y = 5
Maximum bending stress [G}, (],
' 6 6
7 = £Xy= ETXED xi: ]62><2]D
I bd 2 bd
_ 12
6
X
or bd® = @: 23.14%10°

We know that maximum deflection (y.),
swi* Sl I®  5(45x107)x (4.8x10°)  74.1x10°

95 = = 3 3
IBAEL  3BAEL e (10.5%10%) x % bd
74.1%10° 9
3
_ =7.8x10
d 95 :
Dividing equation (ii) by equation (i),
7.8%10°
= ¢ =337 mm Ans.
23.14x10
Substituting this value of d in equation (i),
bx (337)" = 23.14 x 106
23.14x10°
= —— =204 mm Ans.

(337)



Cantilever with a Point Load at its Free End

Iy
—
L

Fig. 20.1. Point load at the free end.

Consider a cantilever AB of length [ and carrying a point load W at the free end as shown in Fig.
20.1. Consider a section X, at a distance x from the free end B.

We know that bending moment at this section,

My = -W-x ...(Minus sign due to hogging)
dz
EI;%T = _W-x (i)
Integrating the above equation, _
' 2
g - W

— =-—5*6 | (i)




where C, is the first constant of integration. We know that when x = |, I = (). Substituting these

values in the above equation,

. i :
0= - E T Cl or C = - E
2 : 2
Now substituting this value of C, in equation (i),
d W W
El — = - —+—
. > 7 (1)

This is the required equation for the slope, at any section by which we can get the slope at any
point on the cantilever. We know that maximum slope occurs at the free end. Now let us see the
abbreviation i for the angle of inclination (in radian) and considering i = tan i, for very small angles.
Thus for maximum slope, substituting x = 0 in equation (iii),

wi
EI-.{'B = T
9
Wi
IB = ﬁ radians

Plus sign means that the tangent at B makes an angle with AB in the positive or clockwise direction.
Integrating the equation (iii) once again,

3 2
W' Wix :
2 AB)

EIy

bending




where C, is the second constant of integration. We know that when x = [, y = 0. Substituting these
values in the above equation,

WP wPP wr’
= ——+——+C=—-+C
0 . 6 y) 2 3 2
or C. = — W_ﬁ ...(Minus sign means that the
2 3 deflection is downwards)

Substituting this value of C, in equation (iv),
wy' | Wilx Wi’
6 2 3
Wilx wx' WP
= "5 "6 3 (V)
This is the required equation for the deflection, at any section. We know that maximum deflection
occurs at the free end. Therefore for maximum deflection, substituting x = 0 in equation (vi),

El-y = —

' 3

W
or yﬂ' = E

wi'

~ 3EI




_ A cantilever beam 120 mm wide and 150 mm deep is 1.8 m long. Determine
the slope and deflection at the free end of the beam, when it carries a point load of 20 kN at its

free end. Take E for the cantilever beam as 200 GPa.
SoLuion. Given: Width (b) = 120 mm; Depth (d) = 150 mm ; Span(/)=1.8m=1.8 x 10’ mm
. Point load (W) = 20 kN =20 x 10° N and modulus of elasticity (E) = 200 GPa = 200 x 10° N/mm”.
Slope at the free end

We know that moment of inertia of the beam section,

bd® 120 (150)°

6 4
= =133.75x10
I = 0 10" mm
WP (20x10°)x (1.8x10°)°
and slope at the free end, Ip = = 3 - =0.0048rad  Ans.
2EI 2% (200%107)x (33.75%10")

Deflection at the free end

We also know that deflection at the free end,
WE _ (20x107)x(1.8x10°)
3EI  3x(200%10°)x (33.75x10°)

Yp =




Macaulay’s Method* for Slope and Deflection

We have seen in the previous articles and examples that the problems of deflections in beams are

bit tedious and laburious, specially when the beam is carrying some point loads. Mr. W.H. Macaulay
devised a method, a continuous expression, for bending moment and integrating it in such a way, that
the constants of integration are valid for all sections of the beam ; even though the law of bending
moment varies from section to section. Now we shall discuss the application of Macaulay’s method
for finding out the slopes and deflection of a few types of beams:

Notes. The following rules are observed while using Macaulay’s method:

1.

Always take origin on the extreme left of the beam.

2. Take left clockwise moment as negative and left anticlockwise moment as positive.
3.

While calculating the slopes and deflections, it is convenient to use the values first in terms of kN and
metres.




Simply supported beam with a central point load.

Consider a simply supported beam AB of length [ and carrying a point load W at the centre of the
beam C as shown in Fig. 19.8.

W

—_— 1._|_. D
=

A
b
L

Fig. 19.8

Take A as the origin. We know that bending moment at any point, in section AC at a distance x
from A,

M, = — % x ....(Minus sign due to left clockwise)
and the bending moment at any point in section CB and at a distance x from A,
W 1
= ——x+W|x—— '
M, 2 ( 2) (1)

Thus we can express the bending moment, for all the sections of the beam in a single equation,
Le.,




W 1
For any point in section AC, stop at the dotted line, and for any point in section CB add the
expression beyond the dotted line also.

Now re-writing the above equation,

. i
dy _ _Wx: _1 ;
EI T = 2 + W (x 2] .00
Integrating the above equation,
dy Wt L W i}
d = — +C i+ - —
EI 1 1 32 (x 2] (1i1)

It may be noted that the integration of (x — %] has been made as a whole and not for individual

terms for the expression. This is only due to this simple integration that the Macaulay’s method is
more effective. This type of integration is also justified as the constant of integration C| is not only
valid for the section AC, but also for section CB.

Integrating the equation (iii) once again,

3 : 3
El-y = —T—‘;+C,x+{:‘2 +%(x——] .iv)




2
[t may again be noted that the integration of (x - %] has again been made as a whole and not for

individual terms. We know that when x = 0, then y = 0. Substituting these values in equation (iv), we
find C, = 0. We also know that when x = [, then y = 0. Substituting these values of xand yand C, =0
in equation (iv),

3 3
L Gl + E(EJ

=
I

12 62
c o WC_WE 3w _wr
17 12 48 48 16
Wi
or C, = 16

Now substituting this value of C, in equation (iif),

El — = —+— . +—

dy W&t W2 W 1Y
dx 416 2

This is the required equation for slope at any section. We know that maximum slope occurs at A
and B. Thus for maximum slope at A, substituting x = 0 in equation (v) upto the dotted line only,

wI?

EIEA = F




wr?
By symmetry, iy = % ..(As before)

Substituting the value of C, again in equations (iv) and C, = 0,

W Wix W 1 |
(VD)

RMJSRALC. T L UL
By =-7 s T2

This is required equation for deflection at any section. We know that maximum deflection occurs
at C. Thus for maximum deflection, substituting x = [/2 in equation (vi) for the portion AC only
(remembering that C lies in AC),

| 3 2 3

WY i w1 W
E.y.=-Y(LT+ WL WE
e 12(2); 16(2) I

-
or Yo = % ...(As before)




A horizontal steel girder having uniform cross-section is 14 m long and is
simply supported at its ends. It carries two concentrated loads as shown in Fig. 19.10.

12 kN 8 kN
«—— 3Im 6.5m :Jfl 45m —»
4 C D B
- 14 m >
Fig. 19.10

Calculate the deflections of the beam under the loads C and D. Take E = 200 GPa and | =
160 x 107 mm".

SoLution. Given: Span (h=14m=14x 10° mm ; Loadat C(W))= IZkN- 12 % lﬂ N; Load
at D (W,)=8kN=28x lﬂ N ; Modulus of elasticity (E) 200 GPa = 200 x 10° N/mm’and moment
of inertia () = 160 x 10 mm4

Taking moments about A and equating the same,
Rpx14 = (12x3)+ (8 x9.5)=112

112 3
222 _8KkN=8x10°N
14

and R, = (12+8)-8=12kN=12x10°N

Ry




Now taking A as the origin and using Macaulay’s method, the bending moment at any section X
at a distance x from A,

El=2 = _(12x10Y)x+ (12 % 107) X [x— (3 X 107)]

+ (8% 107) x [x — (9.5 x 107)]
Integrating the above equation,

z _ 3,92
—(12:103)%+ C.+(12><1{}3)><[""" {3;10 )]

o
dr

[x —(9.5x107)]

+(8%10%) x
( ) 5

= —(6x10)x" + C, + (6% 10M) x [x— (3 x 1077

+ (4 x 10%) x [x — (9.5 x 10™)] (D)

Integrating the above equation once again,

[x — (3x10)T
3

3 :
El-y = —(6><103)><%+c1x+cz+ L (6x10%)x

[x — (9.5 < 10D
3

L+ (@x10%) x

= 2x10)X +C,x+C + (2% 10Y) [x— (3 x 10777




4:-::]‘-'] x (x— (9.5% 10°)] ...(id)

We know that when x =0, then v = 0. Therefore C1=[}.Andwhanx={ldx 10° ) mm, then v=0.
Therefore

0 = —2x 10 x(14 % 10°) + C, x (14 x 107)
+(2x 10%) = [(14 = 10%) — (3 = 107

4:-:103

x[(14 % 10%) (9.5x105)F

= — (5488 % 10" + (14 105} C,+ (2662 10" + 1215 % 10"
= — (27045 % 10"%) + (14 % 10°) C,

12
C, = M=193.2xlﬂq
1410

Substituting the value of C,; equal to 193.2 x 10" and ¢, = 0in equation (i),
Ely = —2x10°x +1932x10°x | +2x10° [x— (3 x 1093

+4:=-:103
3

Now for deflection under the 12 kN load, substituting x=3m ( or 3 x 10° mm) in equation (i)
up to the first dotted line only,
Ely. = =2x10°x (3 % 107)" + 1932 x 107 % (3 % 107
= — (54 % 10" + (579.6 % 10') = 525.6 = 10"

12 12
_ 325.6x10 _ 325.6x10 164 mm  Ans.

Yo = El (2003 10°) x (160 3¢ 10°)

*[x— (9.5% 1097 (i)




Similarly, for deflection under the 8 kN load, substituting x =9.5 m (or 9.5 10 mm) in equation
(i1i) up to the second dotted line only,

Ely, = -2x10°x(9.5x10°) + 1932 x 10’ x (9.5 x 10°)
+2x10° x[(95 x 10%) - (3 x 107’

— (171475 x 10"%) + (1835.4 x 10') + (549.25 x 10

669.9 % 10"

| 12 12
yoo 09910°609x107 0

El (200x10°) x (160 x 10°)




A horizontal beam AB is freely supported at A and B, 8 m apart and carries
a uniformly distributed load of 15 kN/m run (including its own weight). A clockwise moment of
160 kN-m is applied to the beam at a point C, 3 m from the left hand support A. Calculate the
slope of the beam at C, if EI = 40 x 10° kN-m".

160 kN-m 15 kN/m
C
A B
~—— 3m ——>|
* 81‘]‘[ '.---|
Fig. 19.11

SoLuTtion. Given: Span (/) = 8 m ; Uniformly distributed load (w) = 15 kN/m ; Moment at C (L)
= 160 kN-m (clockwise) and flexural rigidity (EI) = 40 X 10° kN-m’".
Taking moments about A and equating the same,
R, x8 = (15x8x4)+160 = 640 kN-m
R, = % =80 kN
and R, = (15x8)-80=40kN
Let i = Slope at C.

Taking A as origin and using Macaulay’s method, the bending moment at any section X at a
distance x from A,




=
[

— 40x é+l§x>{%—16{]{x—3)

_40x ”T*"_]ﬁo( _3)

Integrating the above equalinn,

dy _ 158
Efdx 402+C§+6I16{]( 3)
50

—20x° +C +T —160 (x-3)

[ntegrating the above equation once agajn,

207 : 5t 160(x-3)°

El'y = ———+Cx+C(, —
Y 3 ¥R T 2

..(if)




We know that when x = 0, then y = 0. Therefore C, = 0 and when x = 8, then y = 0. Therefore

~20x(8)’ 5% (8)* 160x (5)
0= ——— 4(C x8 -
7 TG 2
= 8C, - 28533
¢, = B2 -3567

Substituting the values of C, = 356.7 and C, = 0 in equation (i),

| TS
Y - 20243567 +2X 1 _160(x-3)
dx 2

Now for the slope at C, substituting x =3 m in the above equation up to C i.e., neglecting the *last
term.

5% 3

El-ip = —20x3" +356.7+ == =2442

2442

= 3 =(0.0061 rad Ans.
4010




Cantilever with a Uniformly Distributed Load

/— w /unit length

AN

(a)

= AN

—
=
—




Consider a cantilever AB of length [, and carrying a uniformly distributed load of w per unit
length as shown in Fig. 21.11 (a).

We know that the bending moment will be zero at and will increase in the form of a parabola to

)
% at A as shown in Fig. 21.11 (b). Therefore area of bending moment diagram,

wi> 1 WP
= —XIX-=—
A 2 3 6
and distance between the centre of gravity of bending moment diagram and B,
o
Ty
A _wl
Iy = I 6EI radians ...(As before)
wf'j' v 3l

and Y8 = I = El = R E] ...(As before)




A cantilever beam 120 mm wide and 150 mm deep carries a uniformly
distributed load of 10 kN/m over its entire length of 2.4 meters. Find the slope and deflection of
the beam at its free end. Take E = 180 GPa.

SoLuTion. Given : Width (b) = 120 mm ; Depth (d) = 150 mm ; Uniformly distributed load (w)
=10kN/m =10 N/mm ; Length (/) =24 m=24 X 10* mm and modulus of elasticity (E) = 180 GPa
=180 x 10° N-mm”.

Slope at the free end of the beam
We know that moment of inertia of the cantilever beam section,

_ bd® 120x(150)° 6 4
I = 2 B =33.75x 10" mm

and slope at the free end,

. wi® 10 x (2.4 x10%)
‘B = 6El  6x(180x10%) x (33.75 x 10°)

=0.0038rad Ans.

Deflection at the free end of the beam
We also know that deflection at the free end,

wit _ 10x (2.4x10%)*
Y8 = 8EI 8x(180%10°)x33.75x10%)

= 6.83 mm Ans.




I Basic methods to find deflection
for statically determinate beams:

2 Moment Area
Method
Cut for each sections \
No. of coefficient (C1, C2, C3,~

1 ac-Caulay’s Unit Load
Method 3 Method

I
1
)

I

I

I




Double Integration Method

A technique used in structural analysis to determine the
deflection of Euler-Bernoulli beams

« The first English language description of the method was by
Macaulay.

» The actual approach appears to have been developed by

Clebsch in 1862

« The double integration method is a powertul tool in solving
deflection and slope of a beam at any point because we will

be able to directly work on the equation of the elastic curve.



Double Integration Method

Sign Convention

Positive Bending Negative Bending

Assumptions and Limitations

» Deflections caused by shearing action negligibly small compared
to bending

* Deflections are small compared to the cross-sectional dimensions
of the beam

 All portions of the beam are acting in the elastic range

« Beam is straight prior to the application of loads

90



Double Integration Method

The governing differential equation is defined as

dy oM &y
TR = T

1 = El

onintegrating one get,
dy _ [

m I_dx +A----thisequation gives the slope
i

of theloadedbeam.
Integrate once again to get the deflection.

3,f=”gd}: +Ax+B

Where A and B are constants of integration to be evaluated from the

known conditions of slope and deflections for the particular value of x.
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Example 1

Case 1: Cantilever Beam with Concentrated L.oad at the end:-

X
A cantilever beam is subjected to a concentrated 1 |
load W at the free end, it is required to determine
the deflection of the beam =0 o =L
L b
Consider any X-section X-X E:ﬂ" E H
located at a distance x from the Thersfore M|, . = W
left end or the reference nogevemingoquatan ™ = &1
The expressions for the shear force substtuting the value of M i of s hen ieqratng he squation o ge
abd the bending moment Moty
dfy _ Wik
P
2
I:ng —%dx
:

Integrating oncemaore,
dy W
—=)-—=—dx+] Ad
Id}{ / 78 g

3
¥ = W +Ax+B
REI



Example 1: Case 1

The constants A and B are required to be found out by utilizing the boundary
conditions as defined below ,
Wy
.

leatx=L;y=0  ——mmmmmmmmmmmee (1) =
atx=L; dy/dX S 0 T (2) Whie employing the first condition yields

K]
Utilizing the second condition, the value Sl

y=-— +AL+B
BE]
of constant A is obtained as gl
BEI
il wlE
BBl 2Bl
Wit - 3wl 2w
BEl  GEl
_ il
- 3E
oubstituting the values of AandBwe get

1[_W}{3 WEH_WEI

Y= — +
Ell BEl  2EI 3E
The slope aswell asthe deflection would be
maximurm at the free end hence putting x=0 we get,
_
Yrmax = =El

_ e

[Slnpe]mﬂm +E




Example 1: Case 2

Case 2: A Cantilever with Uniformly distributed

In this case the cantilever beam is subjected to
U.d.l1 with rate of intensity varying w/length. The
same procedure can also be adopted in this case

x 2 Boundary conditions
BrM| _ = -wo = = w| =
o 2 2 relevant to the problem
Mo i; are as follows:
= dii}{ " 1LAtx=L;y=0
HE_:_EE| 2.AtX:L;dY/dX=O
[y _[wed The second boundary
& T 2B conditions yields
d W
= A,
dx  BET
3
J":'_i=f—”g;| di +] A dx
e
y = —;}‘El + Ay +B

Xx=0 |e = x=L

A4

3
L
A=
BE]

whereasthe first boundary conditions yields
5= wlt wl?
24El  BEI
gEl

wit wlx WL4]

i
=_1- + -
Thus, ¥ =g |- =+ —5— "3

S0 Yrgem Wil beat x=0

dy :ll'l.ll_3
4% g GEI




Example 1: Case 3

Case 3: Simply Supported beam with uniformly distributed Loads

. . . ;“;u length
In this case a simply supported beam is — ;

subjected to a uniformly distributed load whose )
rate of intensity varies as w/length.

. = s
In order to write down the — -
expression for bending
. I
moment consider any cross-  SF,, =w[§]-w-x
section at distance of x metre e ,
B.M[,_, =w. 5 [x-wax|35
from left end support
_wlx i
22
o Thedifferential equation which gives the elastic curve far the deflected beam is
&'y =ﬂ=1_[m_ﬂ}
TR 5 42 Bl EILZ2 2
dy _ fwlx i
v J pdx- [ 2 axea
W wi
4El  BEI
Integrating,once mare one gets
3 4
g = W0 4B Y

~T12El 24EI



Example 1: Case 3

Boundary conditions which are relevant in this case are that the deflection
at each support must be zero.

ie.atx=0;y=0:atx=l;y=0

Let us apply these two boundary conditions on equation (1) because the
boundary conditions are on y, This yields B = o.

T L

12 24 24

= e g T In this case the maximum deflection will
__wh occur at the centre of the beam where x =
- B | - L/2[1i.e. at the position where the load is
Sothe equationwhich gives the deflection curve is being applied ].SO if we substitute the value
:l[wL}{3_W}{4_wL31{l OfX=L/2
El

e e gz 5] ()

St

Yeax™ = " 384E




Example 1: Case 3

Conclusions:

i.  The value of the slope at the position where the deflection is maximum
would be zero.

ii. The value of maximum deflection would be at the centrei.e. at x = L/2.
The final equation which is governs the deflection of the loaded beam in

this case is 1wl wd wlx
Y_EI 7 34 3 I

By successive differentiation one can find the relations for slope, bending
moment, shear force and rate of loading

Deflection (y)

JEl= wli®  wxt wlx SWLA
12 24 24 " 384El




Example 1: Case 3 o

24
Wi
Slope (dy/d.X) El.ﬁ= Fwls®  dwr®  wl? 24
dx 12 24 24 3" degree Polynomial
] 3
Bending Moment , . e
dhy _ 1 wle w o
Tan=]

2
L 4">\' .
g 2
Single degre® shear force

equation In 'x’

Shear force is obtained by taking third derivative.

Eldgy:wL
¥

=
Rate of intensity of loading

I2|4'_I,f:_

dx?

El W



‘ Example 2: Cantilever Beam

Example - Cantilever beam

Consider a cantilever beam (uniform section) with a single concentrated load
at the end. Atthe fixedend x=10,dy=0, dy/dx =0

TS = AN
//I/% t“‘--—:::::}ig.

—=ll] -

From the equilibrium balance .. At the support there 18 a resisting moment -

FL and a vertical upward force F.
At any point x along the beam there is a moment F(x - L) = M, = El d v /dx

2
El ‘:I—EE = -F (L-x) Integrating

2
El %& =-F (Lx -l’é ) + C_| ..... {C‘=G because dy/dx =0 atx=0)

Integrating again

dyy __F 2. L5 _FL? F ol 3
At and A =.-—{L-E -.-_L_ = . — l--l- =-EL_
(680 3= 25 * w-gl5-g)



‘ Example 2: Cantilever Beam

Fox o
: o
i

-
Fi2

e

Li2 L2

Fi2
2

dy _1[FL = F (L.

E}Eﬂ 'EI[Z(E”) - Fx ]- EI(E x) Integrating

dy _F_ Lx_zz) _ - -

i _EEI(E " +l‘3{.. {ﬂ1 0 because dy/dx = 0 at x = 0)
3

Integrating again y =k L;“z— X) +c,

3 3
= 0 when x = L/2 therefore £ (L . L =
y when x ere nreEEI(H & }-:-.;E 0

3
and thus ¢ = -‘%
2 3
dyy _ F L% 1\ FL Fee. Ly fe
At end B =_F (L L\_ = F(Lr.LY.
end B (). 2EI(4 BZ)' 16E1 N9 Y zEl(a 12) 48E
3 dy _
:t_r:.;ntrﬂ C Y= - 4EIEI (slope 2= 0 by symmetry)




Mac-Caulay’s Method

Mac-Caulay’s method is a means to find the equation that

describes the deflected shape of a beam

From this equation, any deflection of interest can be found

Mac-Caulay’s method enables us to write a single equation for

bending moment for the full length of the beam
When coupled with the Euler-Bernoulli theory, we can then

integrate the expression for bending moment to find the

equation for deflection using the double integration method.



